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Critical behaviour of a Timoshenko beam-half plane
system under a moving load
A. §. ). Suiker, R. de Borst, C. Esveld

Summary In this contribution, attention is focused on the problem of a moving load on a
Timoshenko beam-half plane system. Both the suberitical and the supercritical state will be
analysed via a FE-simulation. The character of the response is explained by the analytical
derivation and the elaboration of the eigen-value problem that follows from the characteristic
wave equations together with the boundary conditions, It will be demonsteated that also
transcritical states can occur. The total number of critical states and the values of the corre-
sponding critical velocities are determined by the beam-half plane stiffness properties us well as
the contact conditions.

Key words Critical velocities, suberjtical and supercrifical state, Mach radiation, dispersion,
length scale
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Introduction

Improvements in rail transport capacity are continuously required to maintain a competitive
edge against other forms of transportation. The quest for the increasing transport capacity
automatically results in the application of higher train speeds. In order to guarantee the safety
of the passengers, it is important 1o adapt the maximum train speed to critical states of the
railway structure (or vice versa), which are governed by considerable amplifications of the
track response under possible generation of surface waves. Indeed, in France speed limits have
been established on certain parts of the TGV-track, since al cruising speed a clearly visible
surface wave was noticed in front of the train.

In this contribution, we will consider the influence of the load speed ¢, on the critical
response of a Timoshenko beam-half plane model via a finite element analysis, in which a
strongly accelerating load is applied to the configuration. The Timoshenko beam takes into
account the bending and shear deformations of the compound system of rails, sleepers and -
ballast, and the half plane models the subgrade. The constitutive behaviour of the structure will
be considered as elastic, which is justified since the response under an instantaneous load
passage is mainly reversible. Although in the past a complete analytical (steady state) solution
for the moving load problem has been derived for various beam-elastic support systems (e,
[2, 4, 51}, the analytical solution is not known for the current system as a resull of the more
complex system behaviour, Also the fact that the load accelerates, complicates an analytical
approach considerably, so that we have to rely on numerical techniques in order to examine the
problem. The analytical treatment in this paper will be limited to the derivation of the dis-
persion relationships, which show that the lowest critical wave speed ¢ of a stiff beam-soft
half plane system lies between a value somewhat smaller than the Rayleigh wave speed of the
half plane and the shear wave speed of the half plane. The exact value depends on the contact
conditions and the stiffness difference between the beam and the half plane. When the beam is
rigidly connectad to the half plane, the total response range can be divided into a suberitical
state (¢ < o) and a supercritical state (6 > ¢ ). For a soft beam-stiff half plane system, nol
only the half plane, but also the beam itself influences the resonance behaviour, resulting in two
additional critical wave speeds. Under these circumstances, transeritical states {Cority < € €
Coiiir) emerge, where the subscript i denotes the number af the critical state.
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¥ig. 1. Timoshenko beam resting on a halfl plane

Since in practice a stiff beam-soft half plane system is more likely to occur than the opposite
situation, & numerical analysis of the former system will be carried out, in which both the
subcritical and the supercritical domain are traversed, Because the passage of the critical state
yields Much radiation, this problem shows similarities with the passage of the sound barrier by
aeroplanes, '

Z

Model and governing equations

In Fig. | we have depicted the system of a Timoshenko beam that rests on an elastic half planie,
where the connection between both elements in the tangeotial direction is governed by an
interface. For a homogeneous half space, the linear relation between the stress tensor gy and the
strain lensor o ready

@i = Dgyey . (1}
If we consider the half space as isotropic, the stiffness companents Dy are expressed by
Dy = 2dgdir + p(Sidy + Sudie) - (2)

Here, 7 and g are Lamé's elastic constants and &; is the Kronecker delta. The linearised
kinematic relation is given by

1 (8w Duy
=3 (e o) @

where u; are the displacements and x; are spatial coordinates, The equations of motion for the
half space read

e 'ﬁﬂ-_ﬂ
Py = E} + afr (4)

in which p is the mass density, i are the acceleration components and fi are the body force
components. The equations of motion (4), the kinematic relation (3) and the constitutive
relation (1) can conveniently be satisfied by decomposing the displacentent vector u inte an
irrotational and into a rotational part (see for instance [1])

Uu=Vo4vVa¥, (5)
where V = (3/2x, 8/8y, 0/dz) and the symbol x defines the cross product of two vectors. The

scalar potential @ and the vector potential ¥ are the solations of the three-dimensional wave
equafions

; 1 "
Vo==®, (6)
szé@, (7)

in which the compressional body wave (P-wave) speed 2 reads



a=ALH (®)
P

and the shear body wave (S-wave) speed fi 18 given by
M
=l (9)

I order ta determine the dynamic behaviour for the two-dimensional plane configuration in
Fig. I, the stress components o, and oz, will be expressed in terms of @ and ¥ by combination
of the expressions (5), (3} and (1), leading to

E'Jq: a?wy)

(10)

e = AV D+ 25
= # dxdr

mzn( aim+a’*i'__ ﬁ) . (11)
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For the current model, the beam cross-section per m width equals 4 = 2H x 1.0 n?, where
2i represents the total beam height. By neglecting higher order terms, the equations of motion
tor the beam are thus determined by

aQ

ppdiv = e Fa . (12)
and

oM
miw-*—Q+E+Hr, b (13)

where g is the density of the beam, w is the vertical beam displacement, ¢ is the beam rotation,
1 is the moment of inertia, ) is the shear force, M is the bmdmg moment, £, is the interface
traction in the direction normal 1o the beam axis, and r, is the traction in the direction
tangential to the beam axis. The shearing angle of the beam j is defined by

ow
e ) 14
- (14
The constitutive equations with respect to the bending moment M and the shear force @ read
@
M = Byl — By (15}
and
Q = qupfy . (16)

in which Ej is the Young's modulus of the beam, jiy, is the shear modulus and 1) is a numerical
factor that takes into account the nonuniform shear distribotion with respect to the cross
section A,

For the half plane, the boundary conditions at 2 = 0 with respect to the normal stress ., and
the shear steess o, vield

Taetemtt) = —In + (17}
and

ﬂ::[_:E‘H] == +f| . {"B}



When the expressions (10) and (11) are substituted in (17) and (18}, followed by substitution of
{14} to (18) into the equations of motion (12) and (13}, we obtain
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and
i e ) ﬂ=¢ alq, a]‘!"_, aj,.-i_.:
Pl = —umd(ﬁ-x t -;‘r) +Epl 25+ Hﬂ(zﬁvxﬂz o s e (20)

Apart from the boundary conditiens (19) and (20), also compatibility of the vertical dis-
placement of the beam and the half plane is required at z = 0

W= Uy - (21}

For the configuration in Fig. |, and using (5), this condition can be rewritten as

(v B,
A (E*E)l=ﬂ I 1:12}

The constitutive relation for the interface shear mode reads
5 = Dy Aty (23)

where Dy, is the shear stiffness of the interface and Aw, is the relative shear displacemen,
gupressed as

aﬂ: = Ugg—] — Hlﬁ . (24}
Using (5), the horizontal displacement at the half-plane surface reads

L O
Uxiet) = \ 32 75 o

Taking into account the boundary condition (18}, Eq. (11) can be substituted into relation (23),
Additionally, expression (24) is combined with {25), and the result is subsequently substituted
into (23)
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The [our equations (19), (20), (22) and (26) contain four unknown variables ©, ¥,, w and ¢,
For 2 plane harmonic wave type, the following solutions can be formulited

(25)

@ = B, expik(ct — Fyz ~x)| , (27)
¥y = Baexplik{ct — Fz —x)] , (28)
w = G explik{ct —x)] | (29)
¢ = Cy explik(et —x)] | {30)

where By and B; are the amplitudes of the body waves in the half plane, €, and C; are the
amplitudes of the body waves in the beam, i = =1, ¢ is the phase velacity, Fp(F,) takes into
account the angle of incidence & between the plane F-wave (§-wave) and the x-axis, 25 defined
by



o
By = tan i = \/3_1 1 (31)

E=tan i _wawe = VIII,;'F =1, {32)
and & is the wave number
2n  w
k = y
L € {33)

in which L is the wave length and ¢ the angular frequency of the wave. Note, that for the
‘Eulerian’ type of description expier — x)', the response during the dynamic process is con-
sidered with respect to the dynamic reference parameter ‘ct’. Nevertheless, the deseription
could equally well be chosen as 'Lagrangian’ with "exp{x — o), for which the respanse is
considered with respect ro the static reference pammeler x'.

Substitution of expressions (27) throegh (30) into (19), (20), (22) and (26} resulis in an
eigen-value problem, which can be written in the malriz-form as

Av=0 , l:?r'ft
where
L gl (R ~2kF, P o T | — i kA
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(35)

and the vector v containg the wave amplitudes v = (B, 85, €, C3).

The determinant of the 2 x 2 submatrix in the lefl upper corner of (35) represents the eigen
behaviour of the half space as characterised by the well-known Rayleigh wave. The determinant
of the 2 % 2 submatrix in the right upper corner represents the eigen-behaviour of the Tim-
ashenko beam. The eigen-behaviour of the beam-half plane system can be obtained by solving

det{A) =0 |

which leads to a fourth-order frequency equation, In the next sechion, the solutions far this
eigen-value problem will be derived numerically for various cases.

3
Wave propagation in the Timoshenko beam-half plane system
In this section, we will analyse the eigen-value problem as given by the relation (34). We will
discuss the cases of a relatively soft and of a relatively still Timoshenkoe beam supported by a half
plane. The real solutions of the eigen-value problem represent one or more characteristic eigen-
modes, that are governed by the propagation of surface waves along the beam-half plane in-
terface, Because a Timoshenko beam is a one-dimensional element, it is not relevant to attribute
the emergence of surface waves to a localised area below the beam axis. However, in order to
keep the current analysis consistent with contact descriptions for continua, the surface wave is
said to emerge at the beam-half plane interface, which is at a distance H helow the beam axis.
The surface waves are activated by body waves which are guided by the Timoshenko beam.
The wave guidance results from the fact that the dynamic impedance of the beam differs from
the dynamic impedance of the half space. Consequently, the heam is denoted as 2 waveguide. A
commeon fealure of & waveguide is the introduction of a "geomelric length scale’, which is here
characterised by the parameter H. Multiplication of the geometric length scale I with the wave
number & yields the characteristic length ¥H, which quantifies the dynamic interaction between
the beam and the half plane. The material and geometry parameters for the compound system
are given in Table 1. According to this table, we will vary the beam stitfness E;, and the interface
stiffoess Dy,




Table 1. Material and geomelry parameters

Timoshenko Ej (soft) 1005 10° [NIm?] {2y = 67 mifs fl, = 43m/s.)
bem
£, (=6ff) 1000 % 10% [Kfm’] (2 = 667 mis. ff, = 430m/a.)
W 0.0 (-]
i 2500 [kgtm’|
n Lo
2H 0.9 [m|
Half plane E 100 x 10° [Nim®] (2 = 228 mfs, I, = 14dmis.)
v 0.20 [-]
e 2000 [kgfm’*]
Interface i%, {smnarh) L0 x 10" [Nl
i3y (Rexible) 50 % 107 [N._fm’]
Dy {rigld) 1.0:% 10% [Nim’|
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Soft Timoshenke beam-stiff half plane system

Hor the current analysis, we assume the tangential interface stiffness 1o be relatively small,
Oy = 1.0 % 10" N/m”, 5o that the beam is smoothly connected ta the half space. The Young's
modulus of the beam equals B, = 10 % 10° N/m’, thus, the beam can be characterised as soff in
comparison with the half piane, F = 100 x 10° N/m". Figure 2 shows the dispersion relations
that have been obtained by solving (34). Apparently, two wave modes emerge, where mode 1 is
coupled to the vertical displacement w of the beam, and mode 2 is coupled to the rotation ¢ of
the beam. For each mode, we have plotied the relation between the characteristic length 1 and
the normalised phase velocity ¢/ ff as well as the normalised group velocity c./f of the half
plane. The group velocity ¢; is 2 physical parameter that governs the velocity of the wave energy
propagation. It can be derived (see for instance, [1]} from

O _Qlek) _ L p P (36)

Both wave mades behave in a strongly dispersive manner (¢ # ¢, ) over a large range of k.
Por the long-wave limit (kH —» 0), the wave velocity of mode | approaches the Rayleigh wave
velocity (¢, = 0.91 f§) of the half plane. For mode 2, the phase and grovp velocity curves are cut
off at the long-wave liniit kH = 0.60, where ¢ = ¢, = fi. Because relatively long waves strongly
penetrate the half plane, the long-wave limit of 2 specific beam mode is fully determined by the
half plane properties. Although the group velocity ¢, of the mode 2 interface wave approaches
the hall plane shear wave velocity f, it will alweys be smaller, which means that no wave energy
is transferred into the half plane by shear body waves. In Fig. 2, the wave modes as governed by
the emergence of surface waves are restricted by
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where the determinant of the matrix (35) contains only real terms. This seems logical, since an
additional imaginary term woold imply that waves are radiated into the half plane (reometrical
damping) by body wave transference. Figure 2 reveals also that for the short wave limit
(kH -~ 0o), the wave velocity for the first mode approaches the shear wave velocity of the
beam, f; = \/ngi, [, while for the second mode it approaches the compressional wave speed of
beam, u; = \/Ey/p. The character of these limits can be ascribed to the fact that infinite
short waves do not penetrate the balf plane, so (hat the corresponding eigen-modes are then
fully determined by the beam characieristics.

Although Fig, 2 gives a good impression of the dispersive behaviour of the total system, for
moving load problems it 1s very convenient to plot the dispersion curves in the w — k plane,
(Fig, 3). By identifying the angular wave frequency w as a kinematic invarian (9], that is
expressed as a linear function of the load speed ¢ and the load trequency 0,

=L key {33]

the infiuence of vibrating moving loads with respect to the eigen-hehaviour of the system can
be plotted in the w — k plane by a straight line, When the load frequency £2 equels zero, the
kinematic invariant passes the apex. Now, we have (hree load velacities, ¢ = [I,, o = =, and
¢ = ¢, at which the kinemalic invariant is tangential to the mode 1 and the mode 2 dispersian
curves, Since the wave frequency woand the wave number k are determined by the coordinates
of the intersection points of the kinematic invariant and the dispersion curves, the corre-
sponding phase velocity {c = w/k) of radiated waves as well as the group velacity (¢, = Qe /0k)
will also be equal to f,, @, and ¢,, as shown in Fig. 3. Hence, for the restriction G =c=c the
energy of radiated waves propagates with the same velocity as the moving load, for which the
amount of radiated energy under the load goes towards infinity as time increases. At this state,
the load velocity ia considered as crifical, ¢ = ¢y, and resonance occurs.

32

SHiff Timoshenko beam-soft half plane system

Next, the beam stiffness is chosen as Ej, = 1000 x 10° Nfm?, which is relutively large compared
to the half plane stiffness £ = 100 x 10° N/m’. We will examine the influence of the interface
stiffness, by considering the case of a smooth, D, = 1.0 % 10! N/m?, a Aexible,

By = 5.0 = 107 Nfm?, and a rigid, [, = 1.0 % 10" N/m®, contact condition, For these ihree
cases, ifig. 4 shows the dispersion relations, where, in contrast 1o the case in the previeus
section, only one eigen-mode appears. This is due 1o the fact that the stiffness parameters of the
beam are larger than for the half plane, which results in high beam velocities {3, and , that will
never become critical when the short wave limit (kif — oo) is approached, as the systemn
prefers to radiate energy into the half plane under lower body wave velocities. For this reason,
wave modes will not emerge after the characteristic length exceeds a certain value. which limits
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the domain kif considerably. For the smooth case, the long-wave limit (kH — 0) approaches
the Rayleigh wave velocity of the half plane, while for the flexible case it is slightly {ess than the
shear wave velocity, and for the rigid case it almost equals the shear wave velocity. At this stage,
the phase velocity ¢ equals the group velocity ¢, o that it can be considered as critical, as
explained in Sec. 3.1, However, it appears that the minimum critical velocily occurs at a
characteristic length larger than zero. If we coosider, for examgple, the smooth case, at
kH = 0.19, we have ¢ = ¢, = ¢t = 0.85 ff, which is less than the Rayleigh wave velocity at the
long wave limit o = 0.91 f. At the lowest critical stage, waves travel undeformed through the
beam without energy radiation into the half plane (¢ < f§ and ¢; < f). The occurrence of o
critical velocity Jower than the Rayleigh wave velocity has also been mentivned in [3, 4], where
the case is discussed of a continuously moving load on an Euler-Bernoulli beam resting on a
half space. Figure 4 clearly reveals that the difference between the lowest critical velocity and
the critical velocity at the long-wave limit diminishes when the interface stifiness is increased.
1t is also interesting to potice that for the smooth case the phase velocity again equals the
Rayleigh wave velocity when kH - 0.36. Nevertheless, the corresponding group velacity ¢, is
now slightly larger than the shear wave velocity [§, which causes radiation of wave energy into
the half plane. Therefore, at 2 load velocity equal to the Rayleigh wave velocity the steady state
response acts in 2 critical sense, but it will not become infinite since part of the wave energy is
dissipated mnto the half plane so that the resonance is prohibited.

Although we have found twe critical velocities for the current set of stiffness paramerers,
upon further increase of the beam stiffness with respect to the half plane stiffiness both critical
velocities will tend towards one critical resonance velocity, which corresponds ta the long-wave
limil kH —+ 0.

Forthe ranges 0 < < c < g and 0 < fl < 2 < ¢, the frequency equation also contains an
imaginary purt, implying that waves are radiated into the half plane. Since \hese ranges do nat
cover resonance phenomena for reasons explained before, they will be left out of consideration.

4
Numerical simulation
We will now examine the problem of a load that accelerates with @ = 100 m/s® from 0 10
180 m/s., on a system of @ relatively stiff Timoshenko beam resting on a soft elastic half plane,
The connection between the half plane and the Timoshenko beam is modelled as rigid. Here,
the Timoshenka beam takes into account the bending behaviour of an equivalent ballasied
track consisting of rails, sleepers and ballast, while the half plane models 3 sandy subgrade. In
correspondence with the material parameters in Table 1, the half plane body wave velocities are
equal to fi = (44 mfs. and 2 = 228 mis, while the beam body wave velocities are equal 1o
f, = 430 m/s. and @ = 667 m/s. In the previous section we have shown that the eritical state
will be reached when the load speed ¢ equals the shear wave velocity fi. Hence, the analysis
covers the subcritical and the supercritical regime.

The dimensions of the system are ! x b= 180 m = 37 5 m. The half plane is modelled with
1.3m x 1.5m quadrilateral four-noded plane-siress elements, for which a 2 x 2 Gauss inte-
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gration scheme is used, For the beam we have used two-node Timoshenko beam elements with
a length 1= 1.5m in combination with a two-point Ganss integration scheme. The time inte-
gration has been performed using a damped Newmark scheme [6], with the parameters
Pewmare = 03025 and 000 = 0.6, The discrete time step equals At == 0.002s, The mabile
character of the load is modelled via a set of discrete pulses that act successively on a sequence
of nodes along which the load is suppose to propagate, as discussed in [8]. In order to model
the infinite charucter of a half plane, the wave energy that arrives at the model boundaries
needs to be absorbed, since reflections at the boundaries will pollute the physical responge. This
is done via discrete viscous damping boundary elements, which are orientated perpendicular
and parallel to the boundary direction [8].

In Fig, 5 we have depicted the vertical Cauchy stress o,, at z= 5.68m below the surfuce, at
vatious load speeds. Obviously, at subcritical load speed, ¢/ — 0.88, the shape of the response
still has a more or less symmetric character. So, despite the fact that the Inad acceleration is
quite large, the appearance of transient waves due to nonstationary load propagation is neg-
ligible. When the load traverses the critical velocity ¢;/8 > 1, interface waves start to radiale in
front of the load position (1.p.). This phenomenon is known as Mach radiation. For a load
moving with constant velocity (steady state), we have determined in the previous section that
the critical response oceurs at a load velocity ¢ almost equal to the shear wave velocity fi. As we
can see, the maximum response s generated at a somewhat higher load veloci ty o/ = 1.12).
This is probably due to the fact that the strong accelerating character of the load
{ay = 100 m/s’) causes a small phase shift as a resull of the fime consumption of radiated body
waves. When the acceleration at the critical state would have been negligible, the maximum
response probably would have occurred at ¢ = fi.

Due to the generation of Mach waves, the response starts to grow in an asymmetrical
fashion, where most of the wave energy is radiated in the direction of load propagation, It is
furthermore noted that at ¢/ = 1.20, the response directly below the load acts in an upward
sense, which result was qualitatively found also for similar moving load problems |3, 71.

Figure 6 shows straboscopically the development of the dynamic amplification factor (d.a.f),
whichi has been obtained by normalisation of the dynamic response (5.} with respect to its
static counterpart, Initially, the d.a.f. equals 1.0, which corresponds to the static solution. As the
load velocity increases, the structure response also increases, where it tends to a mazimum of
four times the static response when the critical siate is reached, Obviously, at this stage, the
maximum tensile stress in front of the load position has the same order of magnitude as the
maximum compression siress at the load position. After passage of the critical state, the
response returns to relatively small amplitudes, comparable to the static value, This kind of
behaviour is similar to the passage of the sound barrier by aeroplanes,

Finally, some remarks are made with respest to the magnitude of the dynamic amplification
at the critical state. This amplitude partly depends on the load acceleration, while the load
acceleration @ = 100 m/s* considered here has, in fact, 2n unrealistically high value for a siate-
oi-the-art train vehicle. By choosing a lower load acceleration, the dynamic amplification at
resonance will increase. At a load acceleration equal to zero {steady state), the resonance
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response even tends towards infinity. However, the madelling of a realistic load acceleration
will lead to extensive consumption of computer time due to the necessity of extremely large
elements configurations, which makes it rather unattractive. Furthermore, the dynamic am-
plification at the resonance state also depends on the amount of structural damping that is
caused by physically nonlinear material behaviour, which mey decreaze the dynamic response
considerably. For these two regsons, the response amplitude close to the critical state should
not straightforwardly be translated into practice.

5
Condustons and evaluation

It has been demonstrated that & moving load problem can be analysed using the finite element
method, in which the moving load is modelled by a sequence of discrete pulses. The response of
a Timoshenko beam-half plane model undergoes strong amplifications when a critical state is
reached. Generally, a number of critical states can arise, depending on the stiffnesses of the
model.

In case of a stiff beam that is smoothly connected to a soft half plane, two critical velocities
emerge, where the firat critical velocity equals the Rayleigh wave velocity of the half plane, and
the second <ritical velocity occurs at a somewhat smaller value. However, when the interface
stiffness or the atiffness difference between the beam and the half plane increase, both critical
velocities approach each other, resulting in one critical resonance velocity, Consequently, there
is one corresponding resonance state, where passage of this state by a moving load yields a
supercritical response, which is strongly asymmetrical as a result of the radiation of Mach
waves. When the load speed is further increased, the supercritical response decreases to the
order of the static response,

In order 10 guarantee convenlent and safe railway transport, the velocity of a train needs to
be considerably smaller (or higher) than a specific critical velocity of the supporting sub-
structure, since the dynamic amplifications around a critical regime may cause unstable vehicle
behaviour, Especially when a railway track consists of soft soil bases, such as clay and peat,
such problems are likely to emerge since the critical states are then within the velocity domain
af a high-speed train.
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