1.	INTRODUCTION	3.3.3	Effect of suspension on lateral accelera-
1.1	Historic development		tion
1.2	Railways	3.3.4	Effect of body tilt coaches on cant defi-
1.3	Tramways and metro		ciency
1.4	Operational aspects	3.3.5	Switches and other constraints
1.4.1	Functions of a railway company	3.3.6	Cant excess
1.4.2	Infrastructure	3.3.7	Maximum cant
1.4.3	Rolling stock	3.4	I ransition curves
1.4.4	Personnel	3.4.1	General remarks
1.4.5	Electrification	3.4.2	Clothoid
1.4.6	Catenary systems	3.4.3	Cubic parabola
1.4.7	Road crossings	3.4.4	
1.4.8	Major rall infrastructure projects	3.5.	Cross level transitions
1.4.9	Developing countries	3.5.1	Relation with the transition curve
1.5	Geometry of a railway line	3.5.2	Adjacent our ves
1.5.1	Clearances	3.3.3	
1.5.2	Alignment Concret track considerations	3.0 2.7	Gradiente
1.0		3.1 271	Gradient resistance
1.0.1	Load boaring function of the track	3.7.1	Magnitudo of gradient
1.0.2	Track geometry components	3.7.2	Vertical rounding off curves
1.0.5	Track geometry components	374	Guidelines for permissible quasi-static
2		5.7.4	accelerations
∠. 21	Wheelrail guidance	3.8	Alignment in mountainous area
2.1	Wheelset and track dimensions	0.0	
2.2	Conicity	4	TRACK LOADS
24	l ateral movement of a wheelset on	4 1	General
	straight track	4.2	Axle loads
2.4.1	Theory according to Klingel	4.3	Line classification
2.4.2	Hunting movement	4.4	Tonnages
2.5	Equivalent conicity	4.5	Speeds
2.6	Worn wheel profiles	4.6	Causes and nature of track loads
2.7	Wheel-rail contact stresses	4.7	Vertical forces
2.7.1	Hertz theory	4.7.1	Total wheel load
2.7.2	Hertz patterns	4.7.2	Tilting risk
2.7.3	Hertz spring constant	4.8	Lateral forces
2.7.4	Single and two-point contact between	4.8.1	Total lateral load
	wheel and rail	4.8.2	Derailment risk
2.7.5	Spreading forces	4.8.3	Lateral force on the track
2.7.6	Wheel-rail creep	4.9	Longitudinal forces
2.7.7	Spin	4.9.1	Causes
2.8	Train resistances	4.9.2	Temperature forces
2.8.1	Types of resistances	4.9.3	Track creep
2.8.2	Required pulling force	4.9.4	Braking load
2.8.3	Adhesion force	4.10	Influence of higher speeds and in- creased axle loads
3.	CURVES AND GRADIENTS	4.10.1	Speed
3.1	General considerations	4.10.2	Increase in axle loads
3.2	Horizontal curves	4.11	Wheel flats
3.2.1	Curve radius/curvature	4.12	Forces due to bad welds
3.2.2	Curve effects	4.13	Axle box accelerations
3.3	Superelevation (or cant)	_	
3.3.1 3.3.2	General considerations Cant deficiency	5. 5.1	INACK CONSTRUCTION

5.2	Formation	6.5.4	Transition between plain track and
5.3	Ballast bed	0.011	bridge
54	Rails	66	Tramway Track
541	Functions	661	Tramway track characteristics
542	Types of profile	662	Examples of paved-in tramway track
543	Geometry of flat-bottom rail	67	Crane Track
511	Modern rail manufacturing	6.8	High speed track and beavy baul track
515	Ingot casting	6.8.1	High Speed Track
516	Continuous casting	682	Magnetic levitation Track
547	Finishing shop	683	Heavy Haul Track
55	Rail properties	0.0.0	heavy had hack
551	Metallurgical fundamentals	7	
552	Heat treatment	7.	The standard turnout
553	Rail grades	711	Set of switches
551	Wear resistance	7.1.1	Common crossing
555	Fatigue strength	7.1.2	Closure rail
5.5.5	Pail failuras	7.1.3	Poils and cleaners in turnouts
5.0	Introduction	7.1.4	Comments of the turnout
5.0.1	Fatigue crack	7.Z	High speed turnouts
562	Corrugation	7.3	Notationa used for awitches and gross
5.0.5	Conugation Boil jointe and welde	7.4	inge
0.7 5 7 1	Rali juints and weids	7 5	Ings
5.7.1	Fich ploted jointe	7.5	
5.7.Z	Fish-plated joints	7.0 7.7	Crossovers
5.7.3	Expansion joints and expansion devices	1.1	Switch calculation
5.7.4	Bridge transition structures	1.1.1	Relation between curve radius and
5.7.5		770	crossing angle
5.7.6	Flash butt weld	1.1.2	Calculation of main dimensions
5.7.7	I nermit weid	1.1.3	Geometrical design of switches and
5.7.8	Electric arc weld		crossings
5.8		1.1.4	Short dictionary of turnout related words
5.8.1	Introduction	-	
5.8.2	l imber sieepers	8.	STATIC TRACK DESIGN
5.8.3	Concrete sleepers	8.1	Introduction
5.8.4	Steel sleepers	8.2	Calculation via beams on an elastic
5.9	Fastenings		foundation
5.9.1	Introduction	8.3	Double beam
5.9.2	Subdivision of fastenings	8.4	Rail stresses
5.9.3	Baseplates	8.4.1	Stresses in rail foot centre
5.9.4	Elastic fastenings	8.4.2	Stresses in the rail head
5.9.5	Rail pads	8.4.3	Rail stresses due to a combined Q/Y
-			load
6.	TRACK SYSTEMS	8.5	Sleeper stresses
6.1	Level crossings	8.6	Stresses on ballast bed and formation
6.1.1	Lightweight universal plates	8.6.1	Introduction
6.1.2	Heavy universal plates	8.6.2	Vertical stress on ballast bed
6.1.3	Harmelen level crossing	8.6.3	Vertical stress on formation
6.2	Track on structures	8.6.4	Classes of quality of soils
6.2.1	Track on structures with a continuous	8.7	Computer models
	ballast bed and sleepers	8.7.1	GEOTRACK program
6.2.2	Track on structures without a ballast bed	8.7.2	Pasternak model
6.3	Direct fastening system		
6.4	Reinforcing layers	9.	DYNAMIC TRACK DESIGN
6.5	Unconventional track systems	9.1	Introduction
6.5.1	Ballasted track versus ballastless track	9.2	Dynamic principles
6.5.2	Use of ballastless track	9.2.1	General

6.5.3 Track resilience

9.2.2 One mass spring system

- ii -

- 9.2.3 Wheel/rail forces
- 9.3 Track modelling
- 9.3.1 Transfer function between track load and track displacement
- 9.3.1.1 Beam on an elastic foundation
- 9.3.1.2 Double beam
- 9.3.1.3 Beam on an elastic foundation (moving load)
- 9.3.2 Discrete support
- 9.4 Vertical wheel response
- 9.4.1 Hertzian contact spring
- 9.4.2 Transfer functions between wheel and rail
- 9.5 Applications of advanced dynamic models
- 9.5.1 Introduction
- 9.5.2 The RAIL program
- 9.5.3 The SPOOR program
- 9.6 Dynamic experiments
- 9.6.1 Introduction
- 9.6.2 Approach on Embedded Rail Structures
- 9.6.3 Data analysis
- 9.6.4 RAIL modelling and calculations of short specimens
- 9.6.5 Results of short specimens

10 TRACK STABILITY AND LONGITUDINAL FORCES.

- 10.1 Introduction
- 10.2 Simple track stability models
- 10.2.1 Straight beam in buckling in case of an elastic lateral resistance
- 10.2.2 Rail track buckling with misalignment and constant lateral shear resistance
- 10.3 Advanced track buckling models
- 10.4 Longitudinal forces
- 10.4.1 General considerations
- 10.4.2 Modelling of the longitudinal force problem
- 10.4.3 Example of longitudinal force calculations

11 TRACK MAINTENANCE

- 11.1 Introduction
- 11.2 General maintenance aspects.
- 11.3 Manual method of track geometry improvement
- 11.4 Rail-grinding trains
- 11.5 Correcting weld geometry
- 11.5.1 STRAIT principle
- 11.5.2 Mobile weld correction
- 11.6 Tamping machines
- 11.6.1 General considerations
- 11.6.2 Tamping principle
- 11.6.3 Smoothing principle of modern tamping machines

- 11.7 Stone blowing
- 11.8 Design tamping
- 11.9 Ballast stabiliser
- 11.10 Ballast cleaner
- 11.11 High temperatures
- 11.12 Maintenance of the track structure
- 11.12.1 Rails
- 11.12.2 Sleepers
- 11.12.3 Switch maintenance
- 11.13 General observations on track renewal
- 11.14 Manual track renewal
- 11.14.1 Renewal of sleepers
- 11.14.2 Renewal of rails
- 11.15 Mechanical track renewal
- 11.15.1 Introduction
- 11.15.2 Track possession
- 11.15.3 Gantry crane method
- 11.15.4 Track section method
- 11.15.5 Continuous method
- 11.15.6 Track renewal trains
- 11.16 Switch renewal
- 11.17 Track laying
- 11.17.1 General considerations
- 11.17.2 Track construction trains
- 11.17.3 Platow system
- 11.17.4 TGV tracks France

12 INSPECTION AND DETECTION METHODS

- 12.1 Ultrasonic rail inspection
- 12.1.1 Introduction
- 12.1.2 The NS ultrasonic train
- 12.1.3 Probe system
- 12.1.4 Detection area
- 12.1.5 NS Ultrasonic inspection program
- 12.2 Recording systems
- 12.2.1 Introduction
- 12.2.2 Some aspects of geometry recording
- 12.2.3 Assessment of track quality for maintenance decisions
- 12.2.4 The NS track recording system BMS
- 12.3 Recording of track geometry according to BMS-1
- 12.3.1 Selecting the measuring system
- 12.3.2 Measuring principle
- 12.3.3 Instrumentation
- 12.3.4 Signal analysis
- 12.3.5 Analog output
- 12.4 Recording of vertical rail and weld geometry using BMS-2
- 12.5. Deterioration of track geometry
- 12.5.1 Introduction
- 12.5.2 Deterioration rates of geometry
- 12.6. Computer-aided track maintenance and renewal
- 12.6.1 Philosophy

- 12.7 Basic data for predicting and planning
- 12.7.1 Introduction
- 12.7.2 Track geometry
- 12.7.3 Management information
- 12.7.4 Rational rail management
- 12.7.5 ECOTRACK
- 13 RAILWAY-INDUCED GROUND VIBRATIONS AND NOISE
- 13.1 Introduction
- 13.2 Some definitions

- 13.3 Ground vibrations
- 13.3.1 Introduction
- 13.3.2 Wave propagation in soils
- 13.3.3 Human perception
- 13.3.4 Measured vibrations
- 13.3.5 Vibration reduction
- 13.3.6 Measures for ballastless track
- 13.3.7 Measures for slab track
- 13.3.8 Measures for tracks in the open
- 13.4 Railway noise